LINEAR ALGEBRA MID SEMESTRAL EXAM M MATH - I 2011-2012

Max Score: 100 Time: 3 hours

Answer question 1 and **any five** from the rest.

- (1) Justify the following statements.
 - (i) If A is a 3×3 orthogonal matrix whose determinant is -1, then -1 is an eigenvalue of A.
 - (ii) Determinant of a hermitian matrix is a real number.

(iii) Let $F = \mathbb{F}_2$, and let $A = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. The bilinear form $X^t A Y$ on \mathbb{F}_2 cannot be diagonalized.

(iv) A map $m : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is a rigid motion fixing origin iff m is left multiplication by an orthogonal matrix.

(v) The only complex matrix which is positive definite, hermitian and unitary is the identity matrix. (5+5+5+5+5)

(2) (a) Let V be a complex vector space of dimension n. Prove that V has dimension 2n as a real vector space.

(b) Let W be the space of $n \times n$ real matrices whose trace is zero. Find a subspace W' so that $\mathbb{R}^{n \times n} = W \oplus W'$.

(c) Show that complex $n \times n$ hermitian matrices form a real vector space. Find a basis and determine its dimension. (4+5+6)

(3) (a) Find a basis of the null space of $\begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & -6 & 1 & 0 \\ 3 & -5 & 2 & 1 \\ 5 & -4 & 3 & 2 \end{pmatrix}$.

(b) Show that a linear operator T on a finite dimensional vector space V is diagonalizable if and only if the minimal polynomial of T is a product of distinct linear factors. (5+10)

(4) (a) Prove that if the columns of an $n \times n$ matrix A form an orthonormal basis, then the rows of A also do so.

(b) Let V denote the vector space of real $n \times n$ matrices. Prove that $\langle A, B \rangle = \text{trace}(A^t B)$ is a positive definite bilinear form on V, and find an orthonormal basis for this form. (5+10)

(5) Let V = ℝ^{2×2} be the space of 2 × 2 matrices.
(a) Show that the form < A, B >= det(A + B) - det(A) - det(B) is symmetric and bilinear.

(b) Compute the matrix of this form with respect to the standard basis $\{e_{ij}\}$, and determine the signature of the form.

- (c) Do the same for the subspace of matrices of trace zero. (4+5+6)
- (6) (a) State spectral theorem for a symmetric operator on a real vector space with a positive definite bilinear form.

(b) State the matrix analogue of this theorem.

(c) If
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
, find a real orthogonal matrix P so that PAP^t is diagonal. (3+2+10)

(7) (a) State spectral theorem for complex normal matrices.

(b) Let V be a finite dimensional complex vector space with a positive definite hermitian form \langle , \rangle . A linear operator $T: V \longrightarrow V$ is called *normal* if $TT^* = T^*T$, where T^* is the adjoint operator of T. Show that T is normal if and only if $\langle Tv, Tw \rangle = \langle T^*v, T^*w \rangle$ for all $v, w \in V$.

(c) Assume T is normal. Prove that if v is an eigenvector of T with eigenvalue λ , then v is also an eigenvector of T^* with eigenvalue $\overline{\lambda}$. (3+6+6)